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ABSTRACT 

 

Purpose : This study evaluates the performance of an artificial intelligence based triage 

and notification system that analyzes fundus photographs for nine signs: cotton wool 

spots, dot & blot hemorrhages, drusens, flame shaped hemorrhages, glaucomatous 

disc, hard exudates, retinal neovascularization, preretinal hemorrhage and vascular 

tortuosity. These signs may be present in multiple retinal diseases. 

 

Methods : In a blinded and adjudicated study, a set of 3484 photographs of unique 

eyes from 3305 patients, from 15 fundus cameras, were graded by retina specialists, 

and the results compared with an AI-based system. 

 

Results : The AI performed at a mean sensitivity of 90.19% and a mean specificity of 

88.38% across all signs. The best performance was in detecting glaucomatous disc with 

a sensitivity of 94.65% and a specificity of 95.36%. The worst performance for 

sensitivity was for detecting vascular tortuosity at 85.06% and that for specificity was for 

detecting drusens 85.21%. 

 

Conclusion : The AI-based system performs at acceptable sensitivity and specificity 

levels  in comparison to retina specialists in a large sample pooled across 15 fundus 

cameras for 9 different clinical signs.  
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Translational Relevance :  This is the one of the first systems to make use of a single 

deep learning model to detect multiple clinical signs, rather than focusing on a binary 

classification for a single disease; which can hence be effectively used to triage multiple 

diseases at once. 

 

 

INTRODUCTION 

Artificial intelligence (AI) has the potential to positively impact health outcomes and 

patient care. Ophthalmology, in particular, has garnered significant attention from AI 

developers and this can help positively address the increasing need for ophthalmic 

care in the world.[1]
 With the rising number of cases of diabetes and hypertension, as 

well as an increasingly ageing population, the need for ophthalmic intervention in these 

diseases is also on the rise. In Sub-Saharan Africa there are 2.5 ophthalmologists per 

million population to 11.9 - 13 ophthalmologists per million in India,[2,3]
 46.4 and 54.7 

ophthalmologists per million in the UK and the USA respectively.[2]
 Globally there are 

31.7 ophthalmologists per million population,[2]
 which is insufficient to meet the growing 

demand for ophthalmic services.  

Our study evaluates the performance of RadicalEye Triage and Notification (RETN), a 

proprietary AI solution, in detecting clinical signs of the retina from macula-centric 

central fundus photographs, irrespective of the disease. Retinal complications due to 

diabetes and hypertension mainly produce vascular changes whereas glaucoma 

produces visible changes of the retinal nerve fibre layer (RNFL) and the optic nerve 
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head (ONH). Age-related macular degeneration results in anatomical changes at the 

posterior pole. These diseases may not produce perceivable symptoms until the 

disease has reached an advanced stage. There are well-defined protocols for 

ophthalmic reviews and follow-ups[4,5]
 however, adherence to these protocols are not 

optimal.[6]
 Thompson et al,[7]

 in their review on barriers in adhering to appointments, 

address important issues such as lack of awareness and inability to get off work. 

However, delays in follow-up can have adverse effects as a study from India has 

shown that a median time delay in meeting follow-up schedule by 5 months can 

convert non-vision threatening DR to vision threatening DR (vtDR).[8]
 However, this 

delay is not unlikely, especially in underserved, underinsured or uninsured 

communities. Historically, in the Los Angeles County Department of Health Services 

(the largest publicly operated county safety net health care system in the United 

States), wait times for retinal examinations have been 8 months or more.[9]
   

 

Artificial intelligence based devices have the capacity to scale rapidly in a very short 

period of time, saving the time and effort of clinicians in screening every patient. 

Timely diagnosis and consequentreatment measures may improve health 

outcomes.The current United States Food and Drug Administration (FDA) approved 

AI devices such as EyeArt[10]
 and IDx-DR[11]

 are specifically designed to diagnose 

more than mild DR (mtmDR) and vtDR in a pre-diagnosed diabetic population. 

Disease-specific algorithms will ignore signs of diseases that they have not been 

trained for. However, Ogunyemi et al[12]
 have shown that 27.25% of known diabetics 

required a referral for diseases other than diabetic retinopathy in a specifically 
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diabetic population.  

Unlike IDx-DR or EyeArt, the AI device under study, RETN, is able to diagnose 

multiple retinal signs from a single image. The retinal signs detected by RETN are 

cotton wool spots, dot & blot hemorrhages, drusens, flame shaped hemorrhages, 

glaucomatous disc, hard exudates, retinal neovascularization (neovascularization of 

the disc (NVD) or elsewhere (NVE), preretinal hemorrhage and vascular tortuosity. A 

combination of these signs can help diagnose diseases such as DR (non-proliferative 

and proliferative), glaucoma, hypertensive retinopathy, dry AMD and many more (non-

exhaustive but extensive list is provided as Supplementary Information). The presence 

of cotton wool spots with dot and blot haemorrhages and hard exudates can indicate 

diabetic retinopathy whereas cotton wool spots with flame haemorrhages and vascular 

tortuosity are more likely to be correlated with hypertensive retinopathy. Unlike its 

predecessors, the use of a multi-output algorithm enables screening for multiple 

potential conditions instead of a single disease diagnosis. All results can be clinically 

correlated for further action as determined by a healthcare provider. 

The study was conducted in accordance with the tenets of the Declaration of Helsinki. 

Requisite institutional review board approval was obtained from Dr Shroff’s Charity Eye 

Hospital, New Delhi, India, a tertiary eye care institute. 

 

METHODS 
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Model Development  

Deep learning (DL) is a subspace of machine learning (ML) which uses deep neural 

networks to perform various tasks. This process of training neural networks requires a 

large amount of labelled data since photographs for a specific disease may look 

different across patients, across two eyes of the same patient, or even photographs of 

the same eye on different fundus cameras (due to factors such as field of view, 

contrast and sensor of the cameras).  

The system employs a convolutional neural network architecture similar to 

EfficientNet,[13]
 which represents the state-of-the-art in image classification and related 

tasks. The model was trained on a large, proprietary dataset of annotated fundus 

photographs collected in a real-world setting. 

1. Training Data Preparation 

A set of about 100,000 colour fundus photographs were curated for training a deep 

neural network based classifier. The training set was created from a larger available set 

to ensure heterogeneity with respect to the source camera sensor, the captured field of 

view, the demographic distributions of the persons imaged, as well as the distribution of 

pathologies exhibited.  

2. Labelling Criteria, Quality Control 



9 

Fundus images were annotated by graders on a web-based tool. Graders were asked 

to identify the clinical signs exhibited in the fundus image. In addition, they were also 

provided an option to signal the presence of imaging artefacts, such as camera flash, 

dust spots, lens flare and others. Further, the graders also had the ability to indicate if 

the image had no diagnostic value, based on the visibility of the retinal anatomical 

landmarks of the disc, macula and major arcade vessels. Thus, for each labelled 

image, grading produced a corresponding bit-string indicating the presence or absence 

of various signs, another one corresponding to imaging artefacts, and a flag indicating 

undiagnosable images. Images that were marked as undiagnosable were excluded 

from the dataset and were not utilized in subsequent processing and training.  

For clinically validating the performance of the trained model, we additionally collected 

a validation set of images, and followed a rigorous process in labelling these images. 

The details and the subsequent statistical analysis of the model performance are 

described later.  

3. Image Pre-processing, Augmentations 

Images were close-cropped, removing any borders and padding. They were then 

resized, preserving aspect-ratio such that the longer side was 384 pixels long. To aid 

regularization during neural network training, and to produce a more robust 

model,extensive augmentations were applied. Augmentations were applied 

probabilistically to each batch of images fed into the neural network after choosing 



10 

control parameters from predefined ranges. Both geometric transformations (rotations, 

translations, random cropping and shearing) as well as color transformations (altering 

the hues of the image slightly, converting a fraction of images to grayscale, varying 

intensity/lightness, color channel shuffling and dropping) were used. Augmentations 

that artificially simulate camera sensor noise were also used. Additionally,  the 

MixUp[14] technique was used at training time. MixUp has been found to promote model 

generalization and lessen the impact of incorrect labels.  

4. Model Development 

Prior to training, training/test splits were first generated by stratifying across patients, in 

order to ensure that multiple images from the same patient do not end up across splits 

and poison the resulting metrics. This stratification process ensured that the training 

and validation data subsets were completely disjoint i.e. no images were present in 

more than one set, nor did images from a given patient appear in multiple sets. To 

predict the clinical signs in questions, an EfficientNet based model architecture was 

used. Since any of the 9 clinical signs in question may occur independently of each 

other, the problem was modelled as a multi-label  classification task. The usual 

classification head of the EfficientNet architecture was replaced with a so-called Linear 

layer with 9 outputs. The entire model was trained with the Adam optimizer, with weight 

decay and cosine learning rate scheduling and early stopping for a total of 25 epochs, 

until the test loss did not decrease any further. Initial values for hyperparameters such 

as learning rate were chosen using random search. 
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Image Grading for Validation 

Image grading for validation used the same workflow software as image grading for 

training, but the protocol followed was different. All photographs were first anonymised 

of any associated metadata, such as camera or patient information, prior to being 

labelled by the retina specialists. Each photograph was then labelled independently by 

two retina specialists. Each specialist labelled the clinical signs that were present in the 

photograph as per internationally accepted standards and definitions of those clinical 

signs.[15-17]
 In case both specialists deemed a photograph to be of insufficient diagnostic 

quality, the photograph was removed from consideration. One photograph often 

contained more than one clinical sign depending on the underlying disease or diseases 

and their progression.  

In case there was any difference in the labels of two retina specialists, the photograph 

was further labelled by a third, senior specialist, as an adjudicator. “Any” difference 

implies that the two sets of labels did not match each other exactly. For example, one 

reader could indicate the presence of 3 clinical signs in the photograph. Unless the 

other reader also indicated those exact 3 labels, the photograph was forwarded for 

adjudication. The two readers and the adjudicators were blind to any labels assigned to 

the photograph previously by another reader, or the AI system. The labels associated 

with the photograph were determined to be either the consensus of the two initial 

readers in the case of an exact match, or the final adjudicated label. There were 5 
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readers and 1 adjudicator in this study.  

Parallel to this, the algorithm also produced the set of labels for each photograph. The 

algorithm outputs a binary vector with 9 elements for each input image. These 

correspond to the nine clinical signs detected by the model. A value of 0 indicates lack 

of the corresponding sign in the image, a value of 1 indicates that the sign has been 

detected in the input. These outputs were then compared to the gold standard validation 

described above, for each individual clinical sign, and metrics were hence derived. 

Sample size 

 

A large retrospective set of 28308 fundus photographs was initially considered to be the 

pool of population samples available for study. These samples were initially shuffled 

randomly before being graded sequentially by human expert readers, i.e, vitreoretinal 

specialists. The following standard assumptions were made in calculating the sample 

size required for statistical analysis of sensitivity and specificity for each clinical sign - 

expected sensitivity: 90%, expected specificity: 80%, prevalence: 20%, confidence 

level: 95%, dropout rate: 10%. This produced a minimum sample size for sensitivity as 

173 samples, and that for specificity at 77 samples. So, a minimum of 77 negative 

samples were required for each sign, and a minimum of 173 positive samples were 

required for each sign. Considering dropout, the minimum sample size was fixed at 191 

samples. The requisite theoretical framework and formulae used to derive these are 
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available in the work of Buderer.[18] This sample size was verified against other methods 

of estimating sample sizes such as binomial estimation, and were found to be similar or 

exact, thereby providing additional confidence regarding the size of the sample. As a 

measure of literature review, the sample sizes for triage and notification devices 

approved by the US FDA were studied and were found to be similar as well. It was safe 

to assume that the number of minimum samples required would be achieved throughout 

the study without specific enrichment strategies since a sample without any of the 9 

clinical signs would serve as a common pool of negative samples for all of the 9 clinical 

signs. This assumption was found to be correct in the course of the analysis. 

 

Based on this requirement, samples were enrolled into the validation set until this 

sample size of 191 positive samples was reached for all 9 clinical signs under 

consideration. In the course of the study, the last set to reach this threshold were 

positive samples for preretinal hemorrhages, and at that point further enrolment of 

samples into the study was stopped, and the final sample set for the study was 

considered final and frozen. 

 

In creating the original gold standard benchmark data set for evaluation, a total of 55962 

sets of labels from 28308 eyes were created across 14718 patients by the readers. 

Photographs were then eliminated if they only contained signs outside the scope of the 

study, and undiagnosable photographs were removed. Further, photographs of the 

same eye were removed, leaving a single image per eye at random. After this, the final 

validation set of 3484 photographs of 3484 unique eyes from 3305 patients was frozen.  
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Statistical Analysis 

 

There were two primary metrics of interest in the study; namely, the sensitivity and 

specificity of the algorithm in detecting each of the 9 clinical signs. 95% confidence 

intervals were calculated as standard binomial intervals. All calculations were done 

using Python scripts using numpy and scipy. Table 2 enumerates the results of the 

performance testing. In addition to the primary metrics of sensitivity and specificity, it 

was also important to evaluate the variability in the performance of the algorithm with 

respect to age, sex, camera and field of view. This was done to evaluate statistically 

whether the error rates of the algorithm (false positives and false negatives) were 

independent of the above factors, or were different for different characteristics.  

In calculating the results, chi-square tests of independence were used to establish 

whether or not the categorical variables of the study showed any dependence on the 

outcomes. The null hypothesis was that the rate of false positives and false negatives 

for different categories would be independent of the category. A p-value of less than 

0·05 would indicate that the null hypothesis needed to be rejected, ie, the rates of error 

in the algorithm are dependent on the covariate. A p-value of more than 0·05 would 

indicate that the null hypothesis was true, ie, no effect of the categories of the variable 

under investigation, such as different types of camera models or different sexes were 

seen on the rates of error of the algorithm. If a certain variate had very few or 

insufficient samples, they were removed. (Table 4). A detailed description of this data is 

available as Supplementary information for each individual clinical sign. 
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RESULTS  

Description of Data  

 

RadicalEye Triage and Notification was validated on a set of 3484 retrospective 

macula-centred fundus photographs acquired through various fundus cameras at 

multiple clinical sites at tertiary and secondary eye care facilities in India. All data was 

captured in regular clinical workflow and reflects a real-world setting of an ophthalmic 

photographer or optometrist capturing the photograph on various cameras.  

A total of 15 different types of fundus cameras were used in the study to study any 

statistically significant variation in the errors in the algorithm. Further, they had 6 

different fields of view (the same camera could also be operated on different fields of 

view). Each clinical feature had photographs from at least 2, at most 7 and on 

average 4.4 cameras (refer to supplementary data for more information). Further, 

since the algorithm does not diagnose a specific disease but looks at specific clinical 

signs, such as hemorrhages and exudates, they are racially invariant. The prevalence 

of a disease may be influenced by race, ethnicity or other clinical factors, but the 

underlying clinical signs that are related to a disease do not vary.  

Undiagnosable photographs refer to photographs where the following retinal landmarks 

are not visible: the optic disc, the macula and the major arcade vessels. They do not 

refer to photographs where these may be occluded by a clinical feature, for example, a 
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preretinal hemorrhage. No two images belong to the same eye.  

1080 photographs did not have any of the signs under consideration. 2404 

photographs had at least one sign under consideration, with a maximum of 6 signs in a 

single image and an average of 2.17 signs per image.  

Of the 3484 images considered in total, the number of positive samples for each 

clinical sign under consideration as per the gold standard data set created as in Table 

1. The two sexes in the dataset were male (64.2%) and female (35.8%). The age 

categories in the dataset were: 18 to 29 years old, 30 to 39 years old, 40 to 49 years 

old, 50 to 59 years old, 60 to 69 years old, and 70 years or above. The mean age was 

50.19 years (SD: 28.06 years).  

The different fields of view in the dataset were (degrees): 30, 35, 40, 45, 50 and 60. 

The different fundus cameras in the dataset were as follows: Canon CR-5, Canon 

CR-1, Canon CF-60UVi, Film Camera Scan (Scanned photographs from non-digital, 

film-based fundus cameras), Forus 3Nethra Classic, Kova VX-10, Nidek AFC-210, 

Nidek NM-200-D, Topcon TRC-NW400, Topcon 50DX, Topcon TRV-50, Topcon 

TRC-NW6, Zeiss FF450 Plus, Zeiss Visuscout and Zeiss Visucam 500.  

Performance Characteristics: Primary Metrics  
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Since this system analyses the photograph for 9 different signs, we also present a set 

of macro, averaged metrics for ease of understanding and communication in Table 3. 

The overall mean was  90.19% for sensitivity and 88.38%  for specificity. 

Performance Characteristics: Secondary Metrics  

The results of the algorithm were found to be independent of age, sex, camera and 

field of view. Had it been dependent, it would not be possible to indicate the system for 

use irrespective of the above factors. It should be noted that the same camera can 

sometimes be operated at different fields of view depending on the operator and the 

manufacturer or mode of use, and hence field of view is considered a separate 

measure from the camera itself. The data considered in this study contains no wide-

field fundus camera or ultra-wide field fundus camera and hence the algorithm should 

be considered untested on wide field fundus camera photographs.  

 

A further performance characteristic that was measured was the average time for 

inference. The time was measured on inference over all samples in the validation set on 

Amazon Web Services (AWS) cloud servers. They were measured on p3.2xlarge 

instances on AWS, in batch mode with a batch size of 32. As an intended cloud-based 

multi-tenant solution, this represents the intended use scenario for the algorithm. GPU 

evaluations were carried out on an NVidia Tesla V100 GPU. CPU evaluations were 

carried out on an Intel CPU (Xeon E5-2686v4 (2.30 GHz) with 8 Cores). For CPU 

evaluations, inference was parallelised across all cores. The mean time taken on GPU-
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accelerated inference was 2.74 milliseconds (ms) per image (SD: 2.64 ms) and the 

mean time taken on CPU inference was 222.48 ms per image (SD: 10.76 ms). For most 

use cases, an optimised and CPU-accelerated inference would suffice (with the 

capacity to analyse 2 patients per second per server considering one photograph per 

eye), but for critical and near-instantaneous results, GPU-acceleration for inference 

could be used (with the capacity to analyse 182 patients per second per server 

considering one photograph per eye). 

Discussion       

Clinical Applicability 

 

The process of training deep neural networks requires a large amount of labelled data 

since fundus photographs of a specific disease may not look the same across patients, 

across two eyes of the same patient, or when taken on different fundus cameras (due to 

factors such as field of view, contrast, and sensor of the cameras). The core algorithmic 

principle upon which the system runs is the analysis of a retinal fundus photograph for 

the presence of one or more of the nine clinical signs mentioned above. These clinical 

signs individually and in combination are suggestive of various ophthalmic diseases 

such as DR, AMD, hypertensive retinopathy, glaucoma, retinal vein or artery occlusions, 

and vasculitis among many others. The model is useful in scenarios where retina 

specialists are not available as it can flag the abnormal signs and suggest the need for 

a more detailed evaluation, both of the eye and the systemic diseases that the retinal 
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pathologies may indicate. The model helps to detect the nine retinal signs and may be 

used in various settings such as screenings and diabetic clinics. However it does not 

preclude the need for a comprehensive examination. It may also find application in 

ophthalmology hospitals to direct patients to appropriate specialty clinics as per the 

findings of the scan. For example, a fundus photograph with a glaucomatous disc merits 

to be seen by a glaucoma specialist whereas a photograph with retinal haemorrhages is 

more suited for a referral to a retina specialist. 

Making the model part of screening programs makes it possible for a much larger 

population to be screened for retinal diseases without the burden of availability of 

specialists for the same. This in turn leads to an early diagnosis. As most retinal 

diseases are vision threatening if not treated timely, an early identification allows 

significant improvement in the patient’s quality of life and reduces financial burden of 

treatment. 

As opposed to screening programs which can be conducted at large scales using the 

RETN model, programs conducted with physical eye examination may have limited 

capacity and long waiting time for appointments may lead to a delayed diagnosis 

leading to advanced stages of the disease, resulting in frequent complications and 

requiring more expensive interventions.  

 

For glaucoma, the cost of treatment increases from $455 in the earliest stage doubling 

to $969 in the advanced[19] stages. Similarly, it  has been studied that even a 6 month 

delay in treatment of vein occlusion can lead to a loss to 9 to 11 ETDRS Letters.[20] 

Specifically for AMD, early treatment at non-neovascular stages can be effective in 
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halting the progression of disease. 84% of individuals with AMD in the US are unaware 

of their disease.[21] It is especially important since drusens usually present 

asymptomatically, and once the disease progresses to wet or neovascular AMD, 

untreated patients can progress rapidly. One line of visual acuity loss is reported as 

early as 3 months.[22]  Once AMD reaches the stage where CNV has developed, 

progression of CNV can be rapid, with immature vessels reaching a maturation state 

within 10–14 days,[22] and patients may remain asymptomatic during this growth. Using 

RETN, a more active and relatively more comprehensive screening can be envisioned 

rather than patients seeking care when they experience symptoms of disease. 

 

Retina is a mirror of systemic diseases. For example, flame shaped hemorrhages on a 

retinal image can be related to retinal vein occlusion (RVO), which in turn may be  

manifestation of hypertension or cardiovascular disease (CVD).[23] 

The nine retinal signs identified by RETN, may be common to several retinal and 

systemic diseases. For example, systemic lupus erythematosus (SLE) presents with 

signs similar to DR such as cotton wool spots and retinal hemorrhages.[24] Specific 

types of anemias may also mimic DR. For example, sickle cell retinopathy can simulate 

a DR fundus in both its proliferative and pre-proliferative stages.[25] Radiation 

retinopathy[26] can also present with intraretinal hemorrhages. 

Cotton wool spots develop in areas of retinal hypoperfusion and can be seen in 

diseases like DR, hypertensive retinopathy, and also infectious diseases such as those 

caused by the human immunodeficiency virus (HIV).[27] The presence of drusens in 

younger populations may point towards underlying inflammatory diseases.[28-30]  
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The output from RETN may help in triaging the patients based on their retinal signs 

identified thereby helping them seek early medical advice. The nine clinical signs 

detected by RETN are among some of the common signs seen on a fundus photograph 

and represent most major retinal diseases (refer to supplementary information for a 

complete list). The algorithm is agnostic to use cases. For instance, the model may be 

used to triage and prioritize cases in a patient list at an eyecare institution. It may also 

be used in non-ophthalmic setups such as a diabetic clinic or optical store for referral to 

ophthalmologists based on the generated report. Each of these settings will present a 

population with different prevalence rates for the various signs. For instance, the 

population at a diabetic clinic will self-select for a higher prevalence of hard exudates 

and dot and blot haemorrhages. Thus, certain statistical measures, such as positive 

predictive value (PPV) and negative predictive value (NPV), which are linked to 

prevalence, will vary. To take this into account, we have included the expected 

statistical performance across a range of prevalences as a table in the supplementary 

data. 

 

Comparison with State of the Art  

In our study, we found that among all clinical signs, the worst sensitivity of RETN was 

85.06% for vascular tortuosity and that of specificity was 85.21% for drusens. The best 

sensitivity and specificity was 94.65% and 95.36% respectively for glaucomatous disc. 

On review of literature, we found that these metrics in isolation are comparable to the 

ones previously reported by various authors such as Gulshan et al,[31] who reported a 
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sensitivity of 97.5% and a specificity of 93.4% (at an operating point for high sensitivity 

for detecting referable DR), Rajalakshmi et al[32] reported a sensitivity of 95.8% and 

80.2% specificity (for detecting DR), Abramoff et al[11] have reported a sensitivity of 

87.2% and a specificity of 90.7% (which was also used by the FDA in approving their 

algorithm for diagnostic use for detecting DR), Burlina et al[33] reported an accuracy 

between 88.4% and 91.6% for detecting AMD, Olvera-Barrios et al[10] reported 

sensitivity of any retinopathy ranging from 92.26% to 92.27%. However, all these 

algorithms previously reported were focussed on detecting specific diseases, whereas 

this study focuses on simultaneous detection of nine retinal signs. 

 

It is useful to compare the current system under evaluation with previously published 

work. On comparing RETN with the existing devices such as IDx-DR and EyeArt, the 

major advantage is that this device flags the various clinical signs irrespective of the 

underlying cause and thereby not restricting itself to diagnosing a particular pathology 

such as DR. Cotter et al emphasized that even in images unreadable for DR, other 

important pathology may be captured and hence it is important for screening tools to be 

able to diagnose other treatable eye diseases in addition to DR.[34] 

IDx-DR is designed to detect one specific disease, more than mild diabetic retinopathy 

in pre-diagnosed populations. RETN is a triage and notification device designed to 

notify the user for the presence of medical signs, not one specific disease. Hence, the 

device outputs are entirely different. IDx-DR is indicated for use on a pre-diagnosed 

diabetic population. This device is designed to be used for any patient who the ordering 

provider believes has the potential for having any of the nine clinical signs identified by 
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the algorithm, regardless of whether the patient has current symptoms suggestive of 

disease. In other words, there is no preset diagnostic or other restriction on the 

population for which RETN is designed to be used. Hence, the populations for which the 

devices are designed to be used are different (RETN’s population is a superset of IDx-

DR’s population). IDx-DR is indicated for use only with the Topcon NW-400 Fundus 

Camera. RETN’s performance is invariant over multiple fundus cameras, and hence is 

not restricted to be used with a specific fundus camera. 

IDx-DR is labelled for use autonomously. RETN however is not envisioned to be a 

standalone diagnostic device, and the results must be correlated clinically. It is not 

designed to be a diagnostic device with the capability to definitively rule out or in any of 

the signs listed above. Hence, it is appropriate for use by a clinician at their discretion. 

The clinical judgement of the ordering physician determines the subject’s diagnosis, 

treatment and other clinical activity. 

  

A feature of RETN is the use of a multi-label classifier. A binary classifier typically 

produces an output which classifies an image into one of two classes (such as, 

presence or absence of diabetic retinopathy). Previous work on analysing multiple signs 

from a single fundus photograph have been demonstrated in the work of Son et al.[35] In 

that work, the authors evaluated a system with the ability to detect 12 clinical signs. 

However, they employed 12 different binary classifiers in each of these clinical signs. It 

was noted in editorial commentary of their work[36] that a future direction of work could 

be to produce ensemble models that aggregated all 12 binary classifiers. The current 

system under consideration addresses that issue, by using multi-label classification on a 
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single algorithm, rather than creating nine different models. This has the potential to be 

much easier to maintain one single algorithm rather than multiple ones. Moreover, deep 

learning algorithms are essentially hierarchical in nature. The lower layers of these 

neural networks learn low-level features, which can be shared among many different 

higher level tasks (of learning to recognise multiple clinical signs) without duplication 

and re-training. It is generally known that such types of learning algorithms (generically 

known as multi-task learning algorithms) provide advantages in performance when the 

underlying distribution of data is similar. Son et al also mention vascular abnormalities 

as one of the detected abnormalities but do not subclassify them. In contrast, RETN is 

capable of diagnosing vascular tortuosity and neovascularization as two specific 

instances of vascular anomalies in the retina. 

  

Future Directions  

The number of clinical signs that exist in the retina is substantially larger than what has 

now been considered in the scope of this study. A definite future direction would be to 

evaluate the efficacy of the system in being able to detect more clinical signs than are 

currently indicated. General principles of deep learning provide an intuition that the 

single-model approach that is currently used may provide a stronger basis for adding 

more signs and an easier pathway towards improvements rather than training a new 

model from the beginning for every new sign. A primary metric of interest in future 

studies may be long-term and prospective settings to evaluate the time and costs saved 

in clinical evaluation or referrals by triaging patients, as well as measurable benefit to 

patient health. Another direction of work would be to analyse the effectiveness of the 
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same or a similar system on ultra-wide field camera photographs. These photographs 

are substantially different from any camera photograph with less than 60 degrees field 

of view. The efficacy of this system has not been evaluated on non-macula centred 

fundus photographs 
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Table 1. Number of positive samples for each clinical sign under consideration 

 

Drusens 346 

Preretinal Hemorrhages 191 

Dot and Blot Hemorrhages 1026 

Cotton Wool Spots 514 

Hard Exudates 1077 

Flame Shaped Hemorrhages 994 

Glaucomatous Disc 486 

Neovascularization 324 

Vascular Tortuosity 261 
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Table 2. Sensitivity and specificity metrics for detection of each clinical sign using 

RETN. 

Clinical Sign Sensitivity (95% CI) Specificity (95% CI) Number of 

Positive 

Samples 

Drusens 91.04% (88.03% - 

94.05%) 

85.21% (83.97% - 

86.46%) 

346 

Preretinal 

Hemorrhages 

89.01% (84.57% - 

93.44%) 

90.59% (89.59% - 

91.58%) 

191 

Dot and Blot 

Hemorrhages 

92.98% (91.42% - 

94.55%) 

85.23% (83.83% - 

86.63%) 

1026 

Cotton Wool Spots 91.05% (88.58% - 

93.52%) 

89.23% (88.11% - 

90.34%) 

514 

Hard Exudates 90.06% (88.28% - 

91.85%) 

89.28% (88.05% - 

90.52%) 

1077 

Flame Shaped 

Hemorrhages 

88.03% (86.01% - 

90.05%) 

86.22% (84.87% - 

87.58%) 

994 

Glaucomatous Disc 94.65% (92.65% - 

96.65%) 

95.36% (94.61% - 

96.12%) 

486 

Neovascularization 89.81% (86.52% - 87.44% (86.28% - 324 
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93.11%) 88.59%) 

Vascular Tortuosity 85.06% (80.73% - 

89.38%) 

86.84% (85.68% - 

88.01%) 

261 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Macro metrics of sensitivity and specificity for nine clinical signs detected by 

RETN. 
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Macro Performance Metric Sensitivity Specificity 

Best 94.65% 95.36% 

Worst 85.06% 85.21% 

Arithmetic Mean 90.19% 88.38% 

Median 90.06% 87.44% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Effects of sex, age, camera and field of view on the error rates of the deep 

learning algorithm. All p-values above 0.05 indicate no statistically significant effect. 
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Clinical Sign Sex Age Camera Field of View 

Drusens 0.633 0.197 0.588 0.752 

Preretinal Hemorrhages 0.125 0.963 0.107 0.107 

Dot and Blot 

Hemorrhages 

0.729 0.245 0.902 0.830 

Cotton Wool Spots 0.566 0.950 0.818 0.094 

Hard Exudates 0.212 0.785 0.295 0.299 

Flame Shaped 

Hemorrhages 

0.615 0.613 0.168 0.092 

Glaucomatous Disc 0.909 0.255 0.352 0.917 

Neovascularization 0.265 0.366 0.351 0.452 

Vascular Tortuosity 0.390 0.213 0.155 0.155 

  


